
Since 1980, manufacturers have relied on QNX® realtime OS
technology to power mission-critical applications – everything
from medical instruments and 9-1-1 call centers, through
battlefield communications and nuclear-monitoring systems,
to Internet routers and in-car infotainment devices. Small or
large, simple or distributed, these systems share an unmatched
reputation for security and reliability, operating 24 hours a day,
365 days a year.

Leverage multi-core processing
Not only is the QNX OS for Security the only full-featured realtime
OS to achieve Common Criteria certification, it is the only
Common Criteria certified realtime OS to implement symmetric
multiprocessing (SMP) and bound multiprocessing (BMP) for multi-
core processors. As a result, it is the only certified realtime OS to
support the parallelism necessary for successful multi-core designs.

Build secure systems
QNX adaptive partitioning technology guarantees system resources
for applications while preventing rogue software from denying
resources to other parts of a system. During overload conditions,
adaptive partitioning enforces hard resource guarantees, ensuring
applications receive their budgeted share of resources.

Create fault tolerant applications
Time-tested and field-proven, the QNX Neutrino® RTOS that the
QNX OS for Security is based on, is built on a true microkernel
architecture. Under this system, every driver, application, protocol
stack, and file system runs outside the kernel in the safety of
memory-protected user space. Virtually any component can fail and
be automatically restarted without affecting other components or
the kernel. Further, the QNX OS provides an optional high-availability
framework for ensuring critical software is monitored and kept
running even after faults. No other commercial RTOS provides
such a high level of fault containment and recovery.

Inherently modular, the QNX OS lets you dynamically upgrade
modules, introduce new features, or deploy bug fixes – without
costly downtime or system outages.

Rely on standards for secure programming
Engineered to the POSIX PSE52 Realtime Controller 1003.13-2003
standard, the QNX OS provides a well understood programming API
with predictable and reliable behavior – a key ingredient to secure
systems. This POSIX API makes it unnecessary to use proprietary
interfaces that have the potential for insecure behavior and
misunderstood results.

Secure microkernel by design – A microkernel realtime operating system
provides protective barriers between processes including networking and
filesystems, which are typically within the kernel memory space in monolithic
operating systems.

QNX OS for Security

Common Criteria certified, memory-protected, microkernel architecture for maximum
reliability, unparalleled scalability, and realtime performance.

qnx.com
© 2014 QNX Software Systems Limited, a subsidiary of BlackBerry. All rights reserved. QNX, Neutrino, are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners. MC590.135

Moreover, POSIX demands proper adherence to user and group
privileges and security defaults that prevent, if necessary, high
privilege access to system resources. Using POSIX programming
also gives developers the power to port legacy and open source
UNIX, Linux, and Internet code with just a simple recompile. With
standard APIs, developers can reuse application code, avoid
costly delays, and shorten their learning curve – accelerating
development cycles and reducing time to market.

Scale large or small
Take advantage of the inherent multi-core capability and built-in
transparent distributed processing of the QNX OS to create large,

highly fault-tolerant systems. Regardless of design requirements,
developers can use the same OS, tools, APIs, and source code
for all projects. The result? Longer product life cycles, shorter
development time, and a significant return on investment.

Foundry27
This community portal for QNX developers provides software
updates, board support packages, drivers, forums, and wikis.
Whether developers want to discuss ideas, post questions or
answers about developing with QNX, or download drivers for
the latest hardware, Foundry27 offers the resources required.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of operating systems, development tools, and professional
services for connected embedded systems. Global leaders such as Audi, Cisco, General Electric, Lockheed Martin, and Siemens depend
on QNX technology for vehicle infotainment units, network routers, medical devices, industrial automation systems, security and defense
systems, and other mission- or life-critical applications. Founded in 1980, QNX Software Systems Limited is headquartered in Ottawa,
Canada; its products are distributed in more than 100 countries worldwide. Visit www.qnx.com

QNX OS for Security at a glance

Common Criteria ISO/IEC 15408
EAL 4+ certification

§§ Stringent standard for security and
development processes used in
development

§§ First full-featured EAL 4+-certified
realtime operating system

§§ First realtime operating system to include
SMP support for multi-core processors
and adaptive partitioning technology in
certification

Microkernel architecture
§§ Dynamically upgradable services and

applications

§§ Fine-grained fault isolation and recovery

§§ Message-passing for modular, well formed
systems

POSIX compliance
§§ POSIX PSE 52 support of broadest range

of POSIX API specifications

§§ Well understood programming API with
predictable behavior

§§ Correct user and group privilege
management and enforcement

High availability and fault tolerance
§§ Heartbeat for early fault detection

§§ Intelligent restart and transparent
reconnection

Adaptive partitioning
§§ Guaranteed system resources for secure,

reliable systems without compromised
performance and flexibility

Predictable realtime performance
§§ Preemptive scheduler with choice of

scheduling methods

§§ Distributed priority inheritance

Multi-core
§§ Comprehensive multi-core support

§§ Asymmetric, symmetric, and bound
multiprocessing

§§ Simple migration from uniprocessing
to multiprocessing

Transparent distributed processing
§§ Transparent network access to remote

resources

§§ Simplified design of fault-tolerant clusters

Filesystems
§§ Image, RAM, Flash, QNX, Linux, DOS,

CD-ROM, DVD, NFS, CIFS, Compression,
NTFS, and HFS+

§§ Power safe mass storage file system

Resource manager framework
§§ Device drivers implemented in user or

nonkernel space

§§ Ability to start, stop, and debug drivers like
any standard application

Device drivers
§§ Audio, character, disk, graphics, input,

networking, parallel, printer, serial, and
USB

Processor support
§§ ARM, PowerPC, and x86

